The Next Big Thing
Posts about next generation technologies and their effect on business.

Hundreds of Thousands of Sensors Make CeNSE for Shell




Hundreds of thousands of sensors,
thousands of wireless points and petabytes of data make CeNSE for Shell


At 0800 GMT today, Shell and HP announced
the first major project that will demonstrate the fundamental concepts behind
CeNSE.


 CeNSE
(Central Nervous System for the Earth) was
conceived by Stan
Williams
, Senior HP Fellow and director of HP' Information and Quantum
Systems Lab (IQSL) where
revolutionary technology is being developed in anticipation of trillions of
sensors that will eventually be an integral part of every aspect of our lives,
our work, and eventually our earth.


The collaborative
project announced by Shell and HP
focuses the fundamentals of CeNSE on the
practical application of finding and producing petroleum.  Together, the
two companies are bringing together complementary capabilities to drive
innovation by developing a wireless sensing system to acquire extremely
high-resolution seismic data on land.  The result will be a significant
leap forward in oil and gas exploration & production.


The system begins with a very small MEMS accelerometer created in the IQSL
lab by Pete
Hartwell
and announced
last November.  (Check out the Scientific American article, "World
Changing Ideas" in the December 2009 edition, page 58, featuring Pete and
his sensor.)  Not only is this sensing device small, rugged, low power and
inexpensive, it is also sensitive - 1000 times more so than the sensor in the
accelerometer in your Wii controller or the air bag of your car.  And that
makes it perfectly suited to measure very minute vibrations with extreme
accuracy - which in turn makes it the perfect sensor upon which to build an
entirely new seismic imaging device.


The resolution of a seismic image is greatly impacted by the quality and the
density of data retrieved during a seismic survey.  Because of their MEMS
heritage, Shell will be able to deploy hundreds of thousands of sensor nodes
(compared to tens of thousands for current systems) within the same weight,
cost, and crew size constraints of current seismic surveys.  That,
combined with the superior sensing range and accuracy, will result in
subsurface images that will be vastly superior (think HDTV compared to a
standard TV picture) and will transform Shell's ability to pinpoint abundant
new oil and gas reserves.


But just as the CeNSE vision encompasses a system of capabilities, the
sensor in the HP-Shell system will be only one part of the total HP-Shell
solution.  All of those sensors need to communicate with a
state-of-the-art monitoring and control system - and in this next-generation
approach the answer is "lose the cables" and "take to the
air".  Traditional seismic sensors are connected by cables that snake
across the survey area.  The HP-Shell solution being pursued uses wireless
communications to tie it all together, not only creating a much more flexible
and resilient solution, but also one that is safer for the employees who deploy
it (less weight to heft and fewer 'cable trips').


Then there is the data collected.  Hundreds of thousands of sensor
nodes will generate orders of magnitude more data than the massive amounts now
collected resulting in petabytes of data, each byte needing to be validated,
stored and then sent to data centers where high performance computers turn the
raw data into better decisions.  Watch this video to understand
how these sensing solutions can open our eyes to a new world of possibilities.


And this system for land-based seismic imaging won't be effective without
the innovations in seismic survey methods and processes being brought to the
collaboration by Shell.  It takes a systems view with a critical
rethinking or everything conventional to create outcomes that are
revolutionary, not evolutionary. 


CeNSE is a terrific vision of the future.  It knits together technology
advancements, emerging personal and business demands, and new skills and
thinking to create a vision that is not only plausible, but highly
probable.  The HP-Shell collaboration to build the next generation of
land-based, seismic sensing capabilities demonstrates that the CeNSE vision can
be translated into a practical solution which will produce superior, high value
business outcomes.  For Shell, this means gaining a competitive advantage
in exploring difficult oil and gas reservoirs and fully realizing the potential
of Shell's processing and imaging technology on land-based exploration and
production.


Welcome to the brighter energy future of sensors and seismic imaging - it
all makes good CeNSE.


 


 


 

Comments
jasonsoochow(anon) | ‎01-21-2011 10:03 AM

Didn't get a clue about how and where these hundreds of thousands of sensors would transmit the data wirelessly to. Do they have a receiver module?

| ‎01-22-2011 12:19 PM

You might want to look into Mesh Networks and other techniques for sensors to store and forward to minimize data collection receiver requirements.

Leave a Comment

We encourage you to share your comments on this post. Comments are moderated and will be reviewed
and posted as promptly as possible during regular business hours

To ensure your comment is published, be sure to follow the community guidelines.

Be sure to enter a unique name. You can't reuse a name that's already in use.
Be sure to enter a unique email address. You can't reuse an email address that's already in use.
Type the characters you see in the picture above.Type the words you hear.
Search
Showing results for 
Search instead for 
Do you mean 
About the Author
Featured
Follow Us
The opinions expressed above are the personal opinions of the authors, not of HP. By using this site, you accept the Terms of Use and Rules of Participation.